Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Plošná interpolace (aproximace) Antonín Staněk, 2014.

Podobné prezentace


Prezentace na téma: "Plošná interpolace (aproximace) Antonín Staněk, 2014."— Transkript prezentace:

1 Plošná interpolace (aproximace) Antonín Staněk, 2014

2 Plošná interpolace používá se při tvorbě DMT a při prostorových analýzách dat v Geografických informačních systémech (GIS) interpolace je proces výpočtu neznámých hodnot určitého jevu na základě známých bodových dat aby bylo možné bodová data interpolovat, musí být sledovaný jev spojitý nebo prostorově závislý obecně platí – při nevhodně zvolených parametrech nebo nevhodně rozloženém bodovém poli nemusí metody interpolace dávat optimální výsledky

3 Metody interpolace Deterministická metoda provádí interpolaci přímo z měřených hodnot vstupních bodů nevyužívá teorie pravděpodobnosti, pokaždé bude vypočten stejný výsledek Stochastická metoda zahrnuje prvek náhodnosti založena na statistickém modelu, který předpokládá prostorovou závislost mezi vstupními body

4 Metody interpolace Deterministické metody: Thiessenovy polygony metoda přirozeného souseda IDW (metoda inverzních vzdáleností) triangulace (s lineární interpolací) Spline (metoda minimální křivosti) metoda radiálních funkcí Stochastické metody: Kriging (geostatické metody)

5 Thiessenovy polygony nejstarší metoda oblast rozdělena na polygony, kdy každý bod uvnitř polygonu je blíže ke vztažnému bodu uvnitř tohoto polygonu než ke kterémukoliv sousednímu postup – určí se spojnice sousedních bodů, pak je celá zájmová plocha rozdělena liniemi kolmými na tyto spojnice (v polovině spojnice)

6 Thiessenovy polygony nevýhody interpolace založená jen na jedné hodnotě – zkoumaný spojitý jev bude mít diskrétní strukturu polygony okrajových bodů mají teoreticky nekonečnou plochu – musí být ořezány hranicemi území vhodná pokud je velmi mnoho vstupních bodů samotná metoda se příliš nevyužívá základem jiných interpolačních metod

7 Thiessenovy polygony

8 Metoda přirozeného souseda využívá pro určení vah Thiessenovy polygony vložení interpolovaného bodu do sítě Thies. polygonů způsobí její přebudování v okolí tohoto bodu polygon nového bodu překrývá určité části původních polygonů známých bodů tyto body tzv. přirození sousedé budou zahrnuty do interpolace bodu nového

9 Metoda přirozeného souseda váhy přirozených sousedů jsou plochy oddělené z původních polygonů jednotlivých sousedů metoda je efektivní, jestliže jsou měřené hodnoty umístěny pravidelně výsledná struktura jevu je spojitá a vyhlazená bez extrapolovaných hodnot

10 Metoda inverzních vzdáleností uplatňuje základní geostatický princip: jevy, které jsou v prostoru blíže k sobě, se více podobají než jevy, které jsou vzdálenější váhy jsou rovny inverzním vzdálenostem, které jsou modifikovány vhodnou mocninou nevýhody: vznikají koncentrické izolinie okolo vstupních bodů metoda nedokáže vypočítat hodnoty vyšší nebo nižší než jsou hodnoty vstupních dat – může dojít ke zkreslení, jestliže měřené body nejsou v extrémech

11 Metoda inverzních vzdáleností

12 Triangulace - TIN TIN = síť nepravidelných trojúhelníků preferují se ploché trojúhelníky (co nejvíce rovnostranné) různé varianty triangulace – Delaunayova triangulace tři body vytvářejí trojúhelník, jestliže v kružnici opsané trojúhelníku neleží žádný další bod

13 Triangulace - TIN pomocí Thiessenových polygonů triangulace z vrstevnic

14 Spline metoda odhaduje neznámé hodnoty použitím matematických funkcí 2 podmínky - prokládaná matematická funkce prochází měřenými body má minimální křivost

15 Kriging podobná metodě IDW váhy nezávisí pouze na vzdálenosti mezi měřenými body a interpolovaným místem, ale také na prostorovém uspořádání měřených bodů okolo místa interpolované hodnoty (určí se prostorová závislost – autokorekce) výpočetně je jedna z nejsložitějších metod

16 Děkuji za pozornost


Stáhnout ppt "Plošná interpolace (aproximace) Antonín Staněk, 2014."

Podobné prezentace


Reklamy Google