Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Škály podle informace v datech: Různé typy dat znamenají různou informaci, resp. různé množství informace Data nominálníRovná se ? x 1 = x 2 Data ordinálníVětší,

Podobné prezentace


Prezentace na téma: "Škály podle informace v datech: Různé typy dat znamenají různou informaci, resp. různé množství informace Data nominálníRovná se ? x 1 = x 2 Data ordinálníVětší,"— Transkript prezentace:

1 Škály podle informace v datech: Různé typy dat znamenají různou informaci, resp. různé množství informace Data nominálníRovná se ? x 1 = x 2 Data ordinálníVětší, menší ? x 1 < x 2 Data intervalováO kolik ? má smysl měřit rozdíl Data poměrováKolikrát ? má smysl měřit podíl Údaje měřitelné na škále vyššího typu můžeme vždy degradovat a zobrazit na škále nižšího typu. Připouštíme tím ztrátu informace, ale většinou je to v zájmu přehlednosti dat. Děláme to v případě, kdy má změřená hodnota stejnou vypovídací schopnost jako např. ordinální vyjádření znaku (hladina protilátek v krvi +++, +,...) Je to nevyhnutelné v případě měření každého spojitého znaku - musíme zvolit konečnou jednotku měření (přesnost měření)

2 TŘÍDĚNÍ DAT je základní způsob zpracování zjištěných (naměřených) dat. Při statistickém šetření potřebujeme roztřídit (uspořádat) velké množství dat do skupin podle jednoho či více zvolených statistických znaků. Třídící znak volíme podle účelu šetření.: věk respondentů pohlaví zdravotní stav daný určitým kritériem … Třídící znak musí být zvolen tak, aby každá statistická jednotka mohla být jednoznačně zařazena do některé skupiny skupiny byly určitým způsobem vyvážené a homogenní

3 Důvody, způsoby a principy třídění dat

4 Určení hodnoty veličiny Hodnotu, kterou náhodná veličina nabyla, zjišťujeme načítáním -DATA DISKRÉTNÍ měřením -DATA SPOJITÁ DISKRÉTNÍ DATA - Čárkovací a jiné metody //// //// /// … 13 hodnot … 10, 8, 4 hodnoty

5 Čárkovací metoda - příklad DATA: 3, 4, 3, 5, 2, 3, 4, 2, 3, 5, 3, 4, 2, 5, 3, 3, 3, 4, 5, 2, 2, 2, 3, 3, 4, 4, 4, 3, 3, 4 Pravděpodobnost jevu: xixi nini 2//// /6 3//// //// //12 4//// ///8 5////4 n = 30 xixi 2345celkem pipi 0,20,40,270,131,0

6 Metoda Lodyha a List (Stem & Leaf) DATA: 55, 70, 71, 70, 65, 63, 58, 56, 82, 64, 65, 75, 76, 68, 63, 69, 65, sloupec - lodyha (angl. STEM) - číslice na místě desítek 2. sloupec - list (angl. LEAF) - číslice na místě jednotek vše uspořádáno vzestupně, tvar připomíná histogram lodyha desítky listy jednotky

7 Metoda Lodyha a List (Stem & Leaf) - příklad 1 16 | | | | | | | | | | 26 | | 28 | | 0 30 | 7 31 | 32 | 33 | | | | | | | | | | | | | | | | | | | 0 Sloučení skupin 16 | | | | | | | | 7 32 | | | | | | | | | | 0370

8 Metoda Lodyha a List (Stem & Leaf) - příklad 2 4 | | | | | | Rozdělení skupin 4 | 3 4 | | | | | | | | | | | 6

9 Způsoby a výsledky třídění dat TŘÍDĚNÍ DAT PODLE POČTU TŘÍDÍCÍCH ZNAKŮ jednostupňové (podle věku respondentů) dvoustupňové (podle 2 veličin – výsledkem je kontingenční tabulka) vícestupňové (pohlaví, věk, vzdělání, …) TŘÍDĚNÍ DAT PODLE TYPU TŘÍDĚNÍ prosté intervalové Výsledkem třídění je tabulka obsahující NADPIS (jaká data, kdy a kde bylo šetření provedeno) HLAVIČKU (obsah sloupců) LEGENDU (obsah řádků) VLASTNÍ DATA

10 PROSTÉ TŘÍDĚNÍ je-li třídící znak kategoriální nebo numerický s malým počtem hodnot PŘÍKLAD Pozorováním hnízd jistého druhu ptáků ve vymezené lokalitě byly zjištěny následující počty mláďat v jednotlivých hnízdech: 3, 4, 3, 5, 2, 3, 4, 2, 3, 5, 3, 4, 2, 5, 3, 3, 3, 4, 5, 2, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4 Lokalita A kde …, kdy … ixixi nini Celkem hnízdn = 30

11 Tabulka četností diskrétní veličiny Hodnotu n i nazýváme absolutní četnost (nebo jen četnost) a vyjadřuje kolikrát se hodnota x i vyskytuje v datech. Platí vztah, kde k je počet různých hodnot x i Absolutní, relativní a kumulativní četnosti v lokalitě A: Pořadí hodnoty Hodnota (počet mláďat) Absolutní četnost Absolutní kumulativní četnost Relativní četnost Relativní kumulativní četnost ixixi nini NiNi fifi FiFi 12666/30 = 0,200, /30 = 0,400, /30 = 0,270, /30 = 0,131,00 Celkem n hodnot3030/30 = 1

12 SKUPINOVÉ (INTERVALOVÉ) TŘÍDĚNÍ DAT je-li třídící znak numerická proměnná s velkým počtem hodnot je důležité správně stanovit počet třídících intervalů pokud si nejsme jisti správnou variantou, můžeme použít některé pravidlo pro stanovení přibližného počtu intervalů, např. Sturgesovo pravidlo: k = 1 + 3,3 log n, kde n je rozsah souboru Dále musíme vhodně zvolit hranice a střed intervalů (střední hodnota reprezentuje daný interval) U spojitých znaků musíme určit, která mez do intervalu patří a která ne (horní, dolní) U diskrétních znaků se snažíme za střed intervalu volit celé číslo

13 SKUPINOVÉ (INTERVALOVÉ) TŘÍDĚNÍ DAT Příklad 1: V ročníku je 56 dětí. Jejich výkony ve sprintu na 60 m se pohybují od 8,20 s do 21,4 s. Časy jsou uvedeny v desítkové soustavě a přesnost měřením je na 1 desetinné místo. Navrhněte vhodný počet intervalů a formu intervalového rozdělení. Řešení: počet intervalů k = 1 + 3,3 log (56) = 1 + 3,3*1,75 = 1 + 5,8 ~ 7 intervaly (21,4 – 8,2 )/ 7 = 1,886 ~ 1,9 Intervalů bude 7 a každý bude mít šířku 1,9 sekund

14 SKUPINOVÉ (INTERVALOVÉ) TŘÍDĚNÍ DAT Předpokládejme, že časy dětí odpovídají této tabulce a jsou vypočteny relativní četnosti. Dolňte absolutní a relativní kumulativní četnosti u jednotlivých tříd časů. V čem je problém u relativních četností? ČasStřed intervalu Počet dětíKumulativní četnost absolutněrelativněabsolutnírelativní 8,2 - 10,09,140,07 10,1 - 11,911,080,14 12,0 - 13,812,9180,32 13,9 - 15,714,8120,21 15,8 - 17,616,790,16 17,7 - 19,518,640,07 19,6 - 21,420,510,02 Celkem560,99

15 SKUPINOVÉ (INTERVALOVÉ) TŘÍDĚNÍ DAT Příklad 2: Ve firmě je 120 zaměstanců a jejich příjem se pohybuje od 5.000,- Kč pracovnice na úklid až po ,- ambiciózního zástupce vedoucího. 120 zaměstnanců má tyto příjmy: 1 zaměstnanec: 5 000, 2: 8 900, 3: , 7: , 5: , 19: , 12: , 8: , 7: , 4: , 9: , 3: , 11: , 12: , 6: , 1: , 4: , 3: , 1: , 1: , 1: Navrhněte vhodný počet intervalů a formu intervalového rozdělení. Řešení: počet intervalů k = 1 + 3,3 log (120) = 1 + 3,3*2,08 = 1 + 6,9 = 8 šířka intervalu ( – )/ 8 = 4500 Kč

16 SKUPINOVÉ (INTERVALOVÉ) TŘÍDĚNÍ DAT Dolňte tabulku podle zadání: 1 zaměstanec 5 000, 2: 8 900, 3: , 7: , 5: , 19: , 12: , 8: , 7: , 4: , 9: , 3: , 11: , 12: , 6: , 1: , 4: , 3: , 1: , 1: , 1: Interval rozpětí platuStřed intervalu Počet pracovníkůKumulativní četnost absolutněrelativněabsolutnírelativní < ) ,0253 < ) ,02560,05 < ) ,1180,15 < ) < ) < ) < ) Celkem1201,001201,00

17 Grafické zobrazení diskrétní veličiny - sloupcový graf Příklad počtu mláďat zkoumaného druhu ptáků v lokalitě A Diskrétní veličinu obvykle zobrazujeme graficky pomocí SLOUPCOVÉHO GRAFU Lokalita A kde, kdy ixixi nini Celkem30

18 Grafické zobrazení diskrétní veličiny - sloupcový graf Stejný příklad počtu mláďat v lokalitě A - vypočteme relativní četnosti Opět diskrétní veličina a grafické zobrazení pomocí SLOUPCOVÉHO GRAFU, ale přepočteného na relativní počty Užitečnost relativních hodnot spočívá v možnosti snadného porovnání s měřením v jiné lokalitě. Loka- lita A Počet mláďat Četnost absol.relat. 1260, , , ,13 Celkem301,00

19 Grafické porovnání Př. 2 Pozorováním hnízd stejného druhu ptáků v lokalitě B byly zjištěny následující počty mláďat: (pro přehlednost uspořádáno do tabulky) Nakreslete v Excelu společný graf absolutních četností pro populaci ptáků v obou lokalitách. Nakreslete v Excelu společný graf relativních četností pro populaci ptáků v obou lokalitách. Lokalita B ixixi nini Celkemn=60

20 Grafické porovnání absolutních a relativních četností

21 Grafické zobrazení spojité veličiny - histogram

22 Grafické zobrazení diskrétní veličiny - sloupcový graf

23

24 Grafické zobrazení diskrétní veličiny - histogram

25 Grafické zobrazení - sloupcový a koláčový graf Česká republika PrahaStředočeský krajOstatní kraje

26 Grafické zobrazení - spojnicový graf

27 Grafické zobrazení - mapa četností podle okresů ČR VHA 2008, kumulativně do 40. kt. počty případů

28 Odkaz na článek Grafy a tabulky ve statistice (aneb Na co ve výuce obvykle není čas) Josef Tvrdík Katedra informatiky, Přírodovědecká fakulta Ostravské university Abstrakt: V článku jsou uvedeny některé jednoduché zásady a doporučení pro vhodnou prezentaci statistických výsledků, zejména tabulek a grafů. Tyto zásady a doporučení vycházejí z literatury a ze zkušeností z aplikací statistiky v různých oborech. Některé chyby v prezentaci výsledků jsou podrobně diskutovány a je také doporučeno vhodnější řešení.


Stáhnout ppt "Škály podle informace v datech: Různé typy dat znamenají různou informaci, resp. různé množství informace Data nominálníRovná se ? x 1 = x 2 Data ordinálníVětší,"

Podobné prezentace


Reklamy Google