Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Keramika Keramika jako nejstarší konstrukční materiál

Podobné prezentace


Prezentace na téma: "Keramika Keramika jako nejstarší konstrukční materiál"— Transkript prezentace:

1 Keramika Keramika jako nejstarší konstrukční materiál Modul pružnosti a pevnost Podstata křehkosti Statistická povaha pevnosti Zkoušení keramik Zhouževnaťování

2 Keramika Nejstarší konstrukční materiál
mostní konstrukce, vodovody (tlakové zatížení) užitná a okrasná keramika Technologický vývoj – renesance použití Užitná keramika – nepřenáší mechanické napětí – odolnost vůči teplotním šokům, vůči korozi a opotřebení Stavební materiály – pevnostní vlastnosti dominantní úloha – těžké konstrukce Konstrukční keramika – biokeramika, lopatky čerpadel, sedla ventilů, filtry – lehké konstrukce Abraziva a nástroje – obráběcí nástroje pro práci za studena i za tepla, manipulační nástroje

3 Těsnící kroužky - SiC

4 Aplikace u extrémně namáhaných součástí Řezné nástroje (Al2O3/SiCW)
Motivace Aplikace u extrémně namáhaných součástí Řezné nástroje (Al2O3/SiCW) Otěruvzdorné součásti (Al2O3/SiC+ZrO2 apod. ) Stavební prvky Sedla ventilů Komponenty motorů (Si3Ni4/SiC… SiC/SiC) Pancíře (SiAlON /SiC … SiC/SiC) Biokompatibilní implantáty (CaO.SiO2 sklo / C, SiC) Kosmické aplikace (sklo/C) Synergie účinků Principiálně nové užitné vlastnosti Mechanické a fyzikální vlastnosti Autodiagnostika Obnova vlastností (zaléčování trhlin)

5 Keramika co by mělo lákat konstruktéry použít keramiku jako konstrukční materiál velká hodnota specifického modulu pružnosti tvrdost odolnost vůči abrazi žáruvzdornost odolnost proti korozi, chemická stálost atd. daň: křehkost (odolnost vůči teplotním šokům)

6 Moduly pružnosti materiálů
KOMPOZITY POLYMERY KOVY KERAMIKA

7 Specifický modul pružnosti
Materiál E [GPa] [Mg/m3] E/ Ocel 210 7.8 27 Al slitiny 70 2.7 26 Al2O3 korund 390 3.9 100

8 Iontová vazba - keramika

9 Kovalentní vazba - keramika
Diamant Křemen Mřížka se vzdaluje od těsného uspořádání

10 Kovalentní vazba - sklo
Křemenné sklo – teplota tavení 1200°C Na, Ca, Fe – terminátoři – 700°C

11 Míra pevnosti H/E (H  0,3Re)
Podstata křehkosti Míra pevnosti iontová a kovalentní vazba - inherentně pevný a tvrdý materiál = vysoký odpor proti pohybu dislokací tvrdý a lehký materiál chceme - křehkost je daní za tyto vlastnosti Míra pevnosti H/E (H  0,3Re) Čisté kovy H/E  Volné dislokace Slitiny kovů H/E  10-2 Zablokované dislokace Keramika H/E  Ideální pevnost Nepohyblivé dislokace

12 Keramika Keramika jako nejstarší konstrukční materiál Modul pružnosti a pevnost Podstata křehkosti Statistická povaha pevnosti Zkoušení keramik Zhouževnaťování

13 Podstata křehkosti iontová a kovalentní vazba - inherentně pevný a tvrdý materiál = vysoký odpor proti pohybu dislokací = nemožnost relaxace napětí na defektech

14 Podstata křehkosti Podstata křehkosti póry, aglomeráty, částice nečistot (inkluze), velká zrna, povrchové trhliny, poškození v důsledku kontaktu, trhliny v důsledku tepelných šoků

15 Podstata křehkosti MATERIÁL KIc [ MPa.m1/2 ] Šedá litina 10 až 25 Ocel
Sklo 0,6 - 1 Al2O3 1 – 3,5 SiC 2,5 – 4 ZrO2 1 - 10

16 Podstata křehkosti

17 Motivace Podstata křehkosti

18 Podstata křehkosti Přípustná velikost vad pevnost v tahu Rm  200 MPa
lomová houževnatost KIC  2 MPa.m1/2 velikost trhliny 2amax = 60 m

19 Podstata křehkosti Zvýšení pevnosti keramik
1) Zmenšením přítomných vad - amax (zjemněním zrna, vysokou čistotou, precizní výroba, lapováním součástí) 2) Zvýšením lomové houževnatosti (zvýšením odporu proti šíření trhliny – design materiálu)

20 Podstata křehkosti Podstata křehkosti Statistická povaha křehkého lomu neexistuje jedna určitá tahová pevnost dané keramiky, ale pouze pravděpodobnost, že daný vzorek (komponenta) má danou pevnost dva nominálně stejné vzorky A a B mají rozdílnou pevnost

21 Podstata křehkosti Podstata křehkosti dva nominálně stejné vzorky A a B mají rozdílnou pevnost větší vzorek má nižší pevnost (podle největšího defektu) pevnost v ohybu je větší než pevnost v tahu (cca 1,7 x)

22 Podstata křehkosti pravděpodobnost lomu (přežití) křída: Pf = 0,3
Konstrukční návrh z keramiky pravděpodobnost lomu (přežití) křída: Pf = 0,3 řezný nástroj: Pf = 10-2 kosmická komponenta: Pf = 10-8 aplikovaná KI materiálová KIC , KR četnost pravděpodobnost lomu faktor intenzity napětí

23 Podstata křehkosti Weibullova statistika
pravděpodobnost přežití (neporušení) PS(V0) jako poměr identických vzorků, každý o objemu V0, který přežije zatížení napětím  k celkovému počtu vzorků m – Weibullův modul, 0 – parametr měřítka

24 Podstata křehkosti 0 – parametr měřítka
m – Weibullův modul 0 – parametr měřítka pravděpodobnost porušení Pf(V0) v poli nehomogenního napětí

25 Podstata křehkosti Podstata křehkosti když  =0, všechny vzorky jsou celé a tedy Ps(V0) = 1 když  roste, pak Ps(V0) klesá dosadíme-li do rovnice za  = 0 zjistíme Ps(V0) = 1/e = 0,37, tj. při napětí  = 0 zůstane 37% vzorků neporušených a pravděpodobnost porušení je 63 % (Weibullovo napětí) m - Weibullův modul - charakterizuje rozptyl, tj. jak moc se mění pevnost v okolí 0 (m  5 – cihla, m  10 – korundová keramika)

26 Podstata křehkosti

27 Keramika Keramika jako nejstarší konstrukční materiál Modul pružnosti a pevnost Podstata křehkosti Statistická povaha pevnosti Zkoušení keramik Zhouževnaťování

28 tahová zkouška Experimentální techniky Zkoušení keramik

29 ohybová zkouška – pevnost v ohybu
Experimentální techniky W0 = h2b/6

30 ohybová zkouška – pevnost v ohybu
Experimentální techniky vliv kvality povrchu !!! (Al2O3) povrch po řezání povrch po broušení

31 Určení lomové houževnatosti
indentační metody – Vickers, Knoop ohybové zkoušky trámečků se zárodečným defektem - ostrá trhlina cyklickým zatěžováním - povrchová trhlina indentací - povrchová trhlina můstkovou metodou - rovný ostrý vrub - vrub typu chevron zkoušky excentrickým tahem s vrubem typu chevron

32 Určení lomové houževnatosti indentační metody
Experimentální techniky indentační metody používat jen v krajním případě !!!

33 Určení lomové houževnatosti ohybové zkoušky
Experimentální techniky ohybové zkoušky 3 (4) bodový ohyb přímé měření průhybu akusticko emisní analýza aplikovatelný při vysokých teplotách jak připravit zárodečnou trhlinu (a vyhodnocovat)

34 Určení lomové houževnatosti ohybové zkoušky
Experimentální techniky ohybové zkoušky Y*min FM KIc = ────── B W1/2 Fc Y

35 Určení lomové houževnatosti ohybové zkoušky
Experimentální techniky ohybové zkoušky Y*min FM KIc = ────── B W1/2 Vrub typu chevron pro určování lomové houževnatosti – „geniální“ předpoklady : ve vzorku není nutné vytvářet trhlinu a měřit její délku po zkoušce trhlina je držena ve stabilním režimu (hnací síla trhliny kompenzována vzrůstající šířkou čela trhliny = vrubu) trajektorie trhliny je držena v rovině chevronového vrubu

36 Určení lomové houževnatosti ohybové zkoušky
2mm ohybové zkoušky 1 mm stable unstable Y*min FMax KIc = ────── B W1/2

37

38 Určení lomové houževnatosti ohybové zkoušky
Experimentální techniky ohybové zkoušky Fc Y KIc = ────── B W1/2 vzorky s rovným vrubem (trhlinou)

39 Určení lomové houževnatosti ohybové zkoušky
Experimentální techniky ohybové zkoušky rozložení hlavních napětí zkouška pevnosti ve vícesměrovém ohybu ring on ring test

40 Určení lomové houževnatosti ohybové zkoušky
Experimentální techniky ohybové zkoušky uspořádání zkoušky plný 3D MKP model rozložení hlavních napětí zkouška pevnosti ve vícesměrovém ohybu ball on three ball test

41 Podstata křehkosti Zvýšení pevnosti keramik
1) Zmenšením přítomných vad - amax (zjemněním zrna, vysokou čistotou, precizní výroba, lapováním součástí) 2) Zvýšením lomové houževnatosti (zvýšením odporu proti šíření trhliny – design materiálu)

42 Zhouževnaťující mechanismy
změna křivky odporu proti šíření trhliny Stínícími účinky na čele trhliny (crack tip shielding) Přemostěním trhliny (crack bridging) (Zhouževnatění vyvolané trajektorií trhliny)

43 Zhouževnaťující mechanismy
výztuž  vlákna  částice  mikro -nano krátká, dlouhá disperse částice matrice hrubozrnná polykrystalická jemnozrnná polykrystalická skelná až nanokrystalická Mikrostrukturní zdroje produkující „stínění“

44 Zhouževnaťující mechanismy
Změna geometrie trhliny (směru šíření, větvení, prohnutí) mikrostrukturně kontrolované – velké částice v jemnozrnné matrici (self-reinforcement) částicový kompozit s křehkými částicemi

45 Zhouževnaťující mechanismy
Drsnostně indukované zhouževnatění

46 Zhouževnaťující mechanismy
Vzájemná interakce mezi magistrální trhlinou a sítí mikrotrhlin

47 Zhouževnaťující mechanismy
Transformační zpevnění procesní zóna částice netransformovaná transformující se transformovaná

48 Zhouževnaťující mechanismy
Přemostění trhliny křehkými částicemi jiné fáze

49 Zhouževnaťující mechanismy
Přemostění trhliny křehkými částicemi jiné fáze

50 Zhouževnaťující mechanismy
Přemostění trhliny a vytahování vláken (a částic) synergie základních zhouževnaťujících mechanismů: přenos zatížení v elastické oblasti přemostění trhliny tření při elastické deformaci matrice tření a vytrhávání vlákna z matrice

51 Lomová houževnatost [MPam0.5]
Zhouževnaťující mechanismy Přemostění trhliny a vytahování vláken (a částic) komerčně dostupný kompozit (Shott Glass Meinz) Youngův modul [GPa] Poisson.konst. Koef. tepl. rozt. [K-1] Pevnost v tahu [MPa] Lomová houževnatost [MPam0.5] skelná matr. DURAN® 63 0,22 3, 60 0,6 vlákno SiC Nicalon® 198 0,20 3, 2750 ?? (0,5) kompozit 118 0,21 3, ~ 26 sklo SiC BCN

52 Skelná matrice s vlákny

53 uhlíková matrice + čedičová vlákna
Přemostění trhliny a vytahování vláken 3 MPa.m MPa.m0.5

54 Vývojový cyklus – design mikrostruktury podle součásti
Motivace Vývojový cyklus – design mikrostruktury podle součásti Design komponenty Výběr matrice Výběr vyztužující fáze Aplikace výztuže do matrice a výroba Vlastnosti, jejich zkoušení a optimalizace Hodnocení lomového chování součástí konstrukce a vývoje technologie !!!


Stáhnout ppt "Keramika Keramika jako nejstarší konstrukční materiál"

Podobné prezentace


Reklamy Google