Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Počítačové modelování dynamických systémů 4.cvičení (přenosy, pro začátek důležité - s je p) Miloslav LINDA katedra elektrotechniky a automatizace.

Podobné prezentace


Prezentace na téma: "Počítačové modelování dynamických systémů 4.cvičení (přenosy, pro začátek důležité - s je p) Miloslav LINDA katedra elektrotechniky a automatizace."— Transkript prezentace:

1 Počítačové modelování dynamických systémů 4.cvičení (přenosy, pro začátek důležité - s je p) Miloslav LINDA katedra elektrotechniky a automatizace

2 Přenosy •přímé zadání přenosu z koeficientů charakteristické rovnice G=tf([b 1 b 0 ],[a 2 a 1 a 0 ]) G=tf([b 1 b 0 ],[a 2 a 1 a 0 ],’td’,x) - ‘td’ představuje dopravní zpoždění a x jeho hodnotu - příklad uvedený nahoře G=tf([1 4],[1 1 2])

3 přenosy •zadání přenosu pomocí nul, pólů a zesílení systému - z jsou nuly systému, p póly sytému a k je zesílení - z jsou nuly systému, p póly sytému a k je zesílení z=[n 1 n 2 ]; p=[p 1 p 2 p 3 ]; k=k 1 - zadání parametrů přenosu G=zpk(z,p,k) - příkaz zpk [B,A]=tfdata(G) - tento příkaz převádí data ze zpk do tf G=tf(B,A) - vytvoření přenosu z=0.6; p=[ ]; k=0.7

4 přenosy •Laplaceova transformace syms s t - zavedení symbolických proměnných s a t, nutno zadat při použití příkazu ilaplace a laplace nebo při symbolických operacích ilaplace((s+4)/(s^2+s+2)) - inverzní Laplaceova transformace laplace(exp(-3*t)) - Laplaceova transformace

5 přenosy •přechodová charakteristika step(G) - vykreslení přechodové char. ze zadaného přenosu step(G 1,G 2,......) - vykreslení více přechodových char. [x,t]=step(G) - vypsání číselného průběhu char.

6 přenosy •impulsní charakteristika impulse(G) - vykreslení impulsní char. ze zadaného přenosu impulse(G 1,G 2,......) - vykreslení více impulsních char. [x,t]=impulse(G) - vypsání číselného průběhu char.

7 přenosy •frekvenční char. v komplexní rovině nyquist(G) - vykreslení frekveční char. ze zadaného přenosu nyquist(G 1,G 2,......)

8 přenosy •amplitudová a fázová char. bode(G) - vykreslení amplitudové a fázové char. ze zadaného přenosu bode(G 1,G 2,......)

9 přenosy •nuly a póly přenosu v komplexní rovině pzmap(G) - vykreslení nul a pólu systému pzmap(G 1,G 2,......) - zobrazení -- x - póly; o - nuly

10 přenosy •bloková algebra - sériové zapojení G=G 1 *G 2 nebo series(G 1,G 2 ) - paralelní zapojení G=G 1 ±G 2 nebo parallel(G 1,G 2 ) - zpětnovazební zapojení z=feedback(G S,G R,-1) z=feedback(G S,G R,1) z=feedback(G S,G R,1)

11 přenosy •určení kritického zesílení a kritické frekvence z otevřeného obvodu [Gm,Pm,Wcg,Wcp]=margin(g) - Gm je kritické zesílení - Pm je kritická fáze - Wcg je frekvence pro kritické zesílení - Wcp je frekvence pro kritickou fázi

12 Doplňkové

13 Přenosy •převod obrazového přenosu na stavový popis (transfer function to state-space) [A,B,C,D]=tf2ss(B,A) [A,B,C,D]=tf2ss([1 2],[1 2 1]) koeficienty čitatel přenosu koeficienty jmenovatele přenosu matice stavového prostoru

14 přenosy •obrazový přenos identifikace dat [B,A]=tfdata(sys,’v’) - kompletní výpis [B,A]=tfdata(sys) - vypíše pouze velikost matice

15 přenosy •zadávání pomocí stavového popisu sys=ss(A,B,C,D) - stavový, maticový popis systému

16 přenosy •převod mezi přenosem spojitým a diskrétním g1=c2d(g2,T,method) perioda vzorkování metoda (základní zoh, další foh)

17 přenosy •změna vzorkovacího času u diskrétního přenosu g1=d2d(g2,T) - nelze použít u vícenásobných kořenů perioda vzorkování

18 ostatní zp2ss- zero-pole to state-space zp2tf- zero-pole to transfer function ss2zpss2tfd2c filt- diskrétní přenos zadaný jako z -1 ss

19 přenosy •generování spojitého systému [B,A]=ord2(wn,z) [A,B,C,D]=ord2(wn,z) kde w n je ω n - přirozená úhlová frekvence z je ξ - poměrné tlumení

20 info a úprava přenosu get(g) - informace o přenosu set(g) - úprava přenosu - set(g,’Varible’,‘p’) - změna s za p

21 budící signál •vytvoření vlastního budícího signálu [u,t]=gensig(type,tau,tf,ts) type - ‘sine’, ‘square’, ‘pulse’ tau - perioda vzorkování tf - celková doba simulace ts - vzorkovací čas [u,t]=gensig('square',5,30,0.1)

22 budící signál •použití příkazu Lsim návaznost na gensig, kdy použijeme předchozí u a t [y,t]=lsim(g,u,t) přenos

23 zobrazení více přenosů ltiview(‘plottype’, g1,g2,g3..gn) - plottype (step, impulse, bode, nyquist, lsim) - neumožňuje vypsat numerické vyjádření

24 rltool •nástroj pro práci, úpravu a simulace zpětnovazebních obvodů s kompenzátorem rltool(gs,gr,locationflag,feedbacksign) přenos soustavy přenos kompenzátoru 1-kompezátor v přímé větvi 2- kompenzátor ve zpětné vazbě -1 - záporná zpětná vazba +1 - kladná zpětná vazba

25 Přenosy •jen pro doplnění při vykreslení, jen pro někoho a někdy  hold on - potlačí přepsaní grafů, lze tedy vykreslit oba do jednoho figure(1),step(G)figure(1),impulse(G)

26 Identifikace zjištění přenosu z přechodové char. identifikace (diskrétní identifikace pomocí modelu ARX nebo AR) th=arx([y,u],[na,nb,1]) [a,b]=th2arx(th) g=tf(b,a,ts) výstupní “sloupcový” vektor vstupní “sloupcový” vektor (pro skok samé 1) stupeň polynomu A stupeň polynomu B vzorkovací čas

27 identifikace zjištění přenosu z přechodové char. identifikace (diskrétní identifikace pomocí modelu ARMAX nebo ARMA) th=arxmax([y,u],[na,nb,nc,1]) [a,b,c]=th2arx(th) g1=tf(b,a,ts)g2=tf(c,a,ts) výstupní “sloupcový” vektor vstupní “sloupcový” vektor (pro skok - samé 1) stupeň polynomu A stupeň polynomu B vzorkovací čas

28 konec


Stáhnout ppt "Počítačové modelování dynamických systémů 4.cvičení (přenosy, pro začátek důležité - s je p) Miloslav LINDA katedra elektrotechniky a automatizace."

Podobné prezentace


Reklamy Google