Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Dostupné z Metodického portálu ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Podobné prezentace


Prezentace na téma: "Dostupné z Metodického portálu ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."— Transkript prezentace:

1 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Slovní úlohy o pohybu Varianta 1: Pohyby proti sobě (2. část) ‏

2 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Jak při řešení rovnic postupovat? 1. Pozorně si přečti text úlohy (raději několikrát). 2. Mezi neznámými údaji zvol jeden, o kterém nevíš vůbec nic, jako neznámou. 3. Pomocí zvolené neznámé a zadaných podmínek vyjádři všechny ostatní údaje z textu. 4. Vyjádři logickou rovnost plynoucí z textu úlohy a na jejím základě sestav rovnici a vyřeš ji. 5. Proveď zkoušku, kterou ověříš, že získané výsledky vyhovují všem podmínkám úlohy. 6. Napiš odpovědi na otázky zadané úlohy.

3 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Slovní úloha o pohybu – varianta 1 Touto variantou se myslí úlohy, v nichž pohybující se tělesa vycházejí, vyjíždějí, odlétají ze dvou různých míst a pohybují se proti sobě tak, aby se v jistém okamžiku a v jisté vzdálenosti od obou míst střetla. AB Abychom to neměli tak jednoduché, vycházejí, vyjíždějí či odlétají tělesa v různých časech, v odlišnou dobu.

4 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Slovní úloha o pohybu – varianta 1 Vzdálenost dvou míst je 240 km. Z místa A vyjelo v 8.00 hodin nákladní auto průměrnou rychlostí 60 km/h. V 8.30 hodin mu z místa B vyjelo naproti osobní auto pohybující se průměrnou rychlostí 80 km/h. Za jak dlouho a jak daleko od místa A se obě vozidla potkají? Ukázka zadání takové úlohy:

5 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Slovní úloha o pohybu – varianta 1 Obě pohybující se tělesa přitom urazí nějakou svoji dráhu s 1 a s 2. s1s1 s2s2 Součet těchto uražených drah (vzdáleností) je roven celkové vzdálenosti mezi místy A a B − s. s Tato logická rovnost plynoucí z textu úlohy je i základem pro sestavení rovnice pro výpočet hledané neznámé. s = s 1 + s 2 AB

6 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Slovní úloha o pohybu – varianta 1 AB s1s1 s2s2 s s = s 1 + s 2 Uražená dráha se přitom vypočítá jako součin průměrné rychlosti pohybujícího se tělesa a doby pohybu: s = v. t s 1 = v 1. t 1 s 2 = v 2. t 2 s = v 1. t 1 + v 2. t 2

7 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Vzdálenost dvou míst je 240 km. Z místa A vyjelo v 8.00 hodin nákladní auto průměrnou rychlostí 60 km/h. V 8.30 hodin mu z místa B vyjelo naproti osobní auto pohybující se průměrnou rychlostí 80 km/h. Za jak dlouho a jak daleko od místa A se obě vozidla potkají? AB v 1 = 60 km/h 240 km Při řešení nejen slovních úloh o pohybu je pro větší názornost vždy velmi přínosný obrázek vykreslující situaci úlohy. Do něj si zapíšeme všechny známé i neznámé údaje. s 1 = 60. ts 2 = 80. (t − 0,5) ‏ Nejprve tedy ty známé … v 2 = 80 km/h Místo setkání A potom ty neznámé … V našem případě je to čas pohybu obou aut. Označíme si čas nákladního auta t. tt − 0,5 Protože osobní auto vyjelo podle časových údajů o půl hodiny později, promítne se tato půlhodina i do času jeho jízdy. I ta bude o půl hodiny kratší. Tzn. (t – 0,5) ‏ Závorku použijeme proto, abychom nezapomněli, že to celé je vyjádření času, musíme s ním tedy jako s celkem počítat.

8 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Vzdálenost dvou míst je 240 km. Z místa A vyjelo v 8.00 hodin nákladní auto průměrnou rychlostí 60 km/h. V 8.30 hodin mu z místa B vyjelo naproti osobní auto pohybující se průměrnou rychlostí 80 km/h. Za jak dlouho a jak daleko od místa A se obě vozidla potkají? s = s 1 + s 2 Vyjádřené údaje pak dosadíme do logické rovnosti plynoucí z textu úlohy, čímž sestavíme rovnici pro výpočet neznámé. 240 = 60. t (t − 0,5) ‏ AB v 1 = 60 km/h s 1 = 60. t s 2 = 80. (t − 0,5) ‏ v 2 = 80 km/h tt − 0,5 240 km

9 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Vzdálenost dvou míst je 240 km. Z místa A vyjelo v 8.00 hodin nákladní auto průměrnou rychlostí 60 km/h. V 8.30 hodin mu z místa B vyjelo naproti osobní auto pohybující se průměrnou rychlostí 80 km/h. Za jak dlouho a jak daleko od místa A se obě vozidla potkají? 240 = 60. t (t − 0,5) ‏ 240 = 60. t t − = 140. t − = 140. t Rovnici vyřešíme Setkají se tedy za 2 hodiny. Ještě nám ale zbývá dopočítat, jak daleko od místa A, tzn. s 1. s 1 = 60. t s 1 = s 1 = 120 km A v 1 = 60 km/h s 1 = 60. ts 2 = 80. (t − 0,5) ‏ v 2 = 80 km/h tt − 0,5 240 km B 280 = 140. t 280 : 140 = t 2 h = t

10 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Vzdálenost dvou míst je 240 km. Z místa A vyjelo v 8.00 hodin nákladní auto průměrnou rychlostí 60 km/h. V 8.30 hodin mu z místa B vyjelo naproti osobní auto pohybující se průměrnou rychlostí 80 km/h. Za jak dlouho a jak daleko od místa A se obě vozidla potkají? t = 2 h s 1 = 120 km Na závěr se provede zkouška toho, zda získané hodnoty vyhovují podmínkám úlohy: Kolik kilometrů ujelo osobní auto, jestliže jelo o půl hodiny kratší dobu? Obě auta dohromady ujela 240 kilometrů, což odpovídá vzdálenosti míst A a B. Můžeme tedy napsat odpověď: Obě auta se potkají za 2 hodiny od výjezdu prvního auta, tzn. v a 120 km od místa A.

11 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Vzdálenost místa A do místa B je 108 km. Z obou míst vyjela současně dvě auta. Rychlost auta jedoucího z místa A byla o 2 km/h větší než rychlost druhého auta. Jaká byla rychlost každého z aut, jestliže se potkala za 54 minut?

12 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Vzdálenost místa A do místa B je 108 km. Z obou míst vyjela současně dvě auta. Rychlost auta jedoucího z místa A byla o 2 km/h větší než rychlost druhého auta. Jaká byla rychlost každého z aut, jestliže se potkala za 54 minut? AB t = 54 min = 54/60 = 9/10 h 108 km t = 54 min = 54/60 = 9/10 h v + 2v s 1 = (v + 2). 0,9 s 2 = v. 0,9 108 = (v + 2). 0,9 + v. 0,9 108 = 0,9v + 1,8 + 0,9v 108 – 1,8 = 1,8v 106,2 : 1,8 = v 59 km/h = v Auto jedoucí z místa B mělo rychlost 59 km/h, auto jedoucí z místa A o 2 km/h větší, tzn. 61 km/h.

13 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Z Olomouce směrem na Hradec Králové vyjel v 7 hodin nákladní automobil průměrnou rychlostí 40 km/h. Z Hradce Králové, vzdáleného 210 km od Olomouce, vyjel v 7 hodin 45 minut osobní automobil průměrnou rychlostí 80 km/h. Za kolik hodin od výjezdu nákladního automobilu a jak daleko od Olomouce se potkají?

14 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Z Olomouce směrem na Hradec Králové vyjel v 7 hodin nákladní automobil průměrnou rychlostí 40 km/h. Z Hradce Králové, vzdáleného 210 km od Olomouce, vyjel v 7 hodin 45 minut osobní automobil průměrnou rychlostí 80 km/h. Za kolik hodin od výjezdu nákladního automobilu a jak daleko od Olomouce se potkají? OHK v 1 = 40 km/h 210 km s 1 = v 1. t s 2 = v 2. t v 2 = 80 km/h t t − 0,75 s 1 = 40. t s 2 = 80. (t − 0,75) ‏ 210 = 40t (t − 0,75) ‏ 210 = 40t + 80t − = 120t t = 270 : 120 = 2,25 h Potkají se za 2 hodiny a 15 minut 90 km od Olomouce. s = 40. 2,25 s = 90 km


Stáhnout ppt "Dostupné z Metodického portálu ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."

Podobné prezentace


Reklamy Google