Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Energetický výdej Výživa a inzulínová rezistence František Duška Klinika anesteziologie a resuscitace 3. LF UK Diabetologické a nutriční centrum FNKV,

Podobné prezentace


Prezentace na téma: "Energetický výdej Výživa a inzulínová rezistence František Duška Klinika anesteziologie a resuscitace 3. LF UK Diabetologické a nutriční centrum FNKV,"— Transkript prezentace:

1 Energetický výdej Výživa a inzulínová rezistence František Duška Klinika anesteziologie a resuscitace 3. LF UK Diabetologické a nutriční centrum FNKV, Praha

2 Program 1.Odpověď metabolismu na stres (20 min) 2.Energetický výdej – vč. metod měření (60 min) 3. (15 min) 4.Inzulínová rezistence z pohledu nutricionisty (60 min) ▫inzulínová rezistence u kriticky nemocných ▫nutriční problematika T2DM

3 Cíle 1.Jak odpovídá energetický metabolismus na stres a nemoc? 2.Co je energetický výdej a jak je možné jej odhadnout, vypočítat nebo změřit? 3.Jaký je význam inzulínové rezistence z pohledu nutricionisty? Jak IR kvantifikujeme? 4.Je nutriční strategie u diabetiků stejná jako u nediabetiků?

4 1. Metabolická odpověď na stres Rozdíl mezi normálním a stresovým hladověním

5 Energetické rezervy Energetické rezervy organismu (80kg štíhlý pacient, bez preexist. malnutrice): ▫sacharidy: 0,6 kg = 600x4 kcal = 2 400kcal ▫lipidy: 15kg = 15 000x9 kcal =135 000kcal ▫proteiny: 10 kg = 10000x4kcal =40 000kcal Potřeba energie: ▫1 kcal/kg/hod (nestresovaný muž): významně modifikováno ve stresu

6 Prosté hladovění Z evoluce vyvinuty dokonalé adaptační mechanismy, nerušené chorobou ▫postupný pokles oxidace glukózy vede k šetření proteinů ▫energetický výdej klesá a je kryt oxidací tuků ▫v adaptaci je klíčový pokles inzulinémie + rozvoj inzulínové rezistence Dg. snadná klinickým vyšetřením LDN, mentální anorexie: reverzibilní přívodem energ. substrátů

7 Metabolická reakce na stres I. Fáze odlivu: 1. den ▫resuscitace šoku, hypoperfuze tkání, acidóza, hypometabolismus ▫hyperglykémie, elevace laktátu  glykogenolýza:  inzulín,  kontraregulace   odsun glukózy ▫hypocholesterolémie

8 Metabolická reakce na stres II. Fáze přílivu: 2.-7. (10.) den ▫klinicky fáze selhávání vzdálených orgánů - MODF, SIRS/CARS ▫hypermetabolismus ▫hyperglykémie  vysoký obrat glukózy: glukoneogeneze z AK  inzulínová rezistence – klíčový fenomén

9

10 Metabolická reakce na stres III. Důsledky stresového hladovění a hypermetabolismu ▫proteolýza (až 1kg svalové hmoty denně!)  sval. slabost, imunosuprese, horší hojení ran, hypalbuminemie ▫hyperglykémie ▫tuky se mobilizují relativně málo stav není reverzibilní prostým přívodem živin

11 Metabolická reakce na stres IV. Prolongovaná fáze kritického onemocnění: od 10.dne ▫cca 10% pacientů na JIP ▫odeznívá hypermetabolismus, trvá inzulínová rezistence, generalizovaná adenohypofyzární suprese ▫prohlubují se důsledky „muscle wasting“

12 Jak odpovídá energetický metabolismus na stres a nemoc?

13 2. Energetický výdej Složky, změny v nemoci, metody odhadu, výpočtu, měření – nepřímá kalorimetrie

14 Stanovení kalorického cíle vyžaduje znalost energetického výdeje Nutriční kalorický cíl: ▫80% EE = permisivní „underfeeding“ ▫100% EE = plné krytí ▫100% + 500kcal/24h = anabolická strategie Energetický výdej lze odhadnout, změřit nebo vypočítat (Beneš, 1999)

15 Energetický výdej Složky energetického výdeje: ▫„bazální metabolismus“ 60% ▫dietou indukovaná termogeneze 10% ▫fyzická aktivita: variabilní BMR = 1 kcal/kg.hod, závisí na: ▫pohlaví (muži >ženy) ▫věku (mladší > starší) ▫v nemoci na tělesné teplotě a stupni stresu

16 Odhad energetického výdeje EE = BMR * IF * AF * TF ▫IF (injury factor)  1,0 u nestresovaného, 1,1 elektivní chirurgie … 1,5 septický šok ▫AF (activity factor)  0,9 řízená ventilace; 1,0 klid na lůžku … 1,5 ambulantní nem. nebo aktivně RHB ▫TF (temperature factor)  37 C = 1,0 s každým stupněm tělesné teploty se TF upravuje o 0,1

17 Příklad 45 letý pacient (85 kg) 7. den po polytraumatu hlava-hrudník-končetiny, v sepsi, fyzikálně chlazený na 37 C a v hluboké analgosedaci kvůli vzestupům ICP, plně řízená ventilace ▫BMR = 24 Kcal/kg.den * 85 kg = 2040 kcal ▫IF (polytrauma, sepse)= 1,5 ▫AF (hluboká analgosedace, řízená UPV) = 0,9 ▫TF pro 37 °C = 1,0 EE = 2040*1,5*0,9*1,0 = 2754 kcal/den kalorický cíl = 80% = 2200 kcal/den

18

19 Harris-Benedictova rovnice Proc Natl Acad Sci, 1918

20 Harris-Benedictova rovnice Výpočet BMR podle pohlaví, věku, výšky, váhy ▫klinicky se dodnes používá (Excel) ▫málo přesná u obézních Náš příklad: EE = 1820 kcal (odlišnost od odhadu 11%) Proc Natl Acad Sci, 1918

21 Měření energetického výdeje Referenční metody (klinicky nepoužitelné): ▫Přímá kalorimetrie ▫Double-labeled water Nepřímá kalorimetrie ▫princip = měření spotřeby O 2, výdeje CO 2 a odpadů dusíku močí ▫bed-side metoda ke zjištění energetického výdeje a event. trojpoměru oxidovaných živin

22 Přívod vzorku plynu z inspiračního ramene okruhu Přívod vydechovaného plynu K pacientovi Od pacienta

23

24

25 Princip nepřímé kalorimetrie Tvorba ATP+tepla probíhá v návaznosti na dýchací řetězec, který spotřebovává O 2 Weir, 1949: EE(kcal/24h)=V o2 (l/24h)*4,856 ▫spotřeba kyslíku závisí na typu oxidované živiny (kalorický ekvivalent = 4,66-5,05 kcal/ l O 2 ) 1g glukózy + 0,747 l O 2 = 0,747 l CO 2 + 0,6 g H 2 O3,7 kcal 1g proteinu + 1,031 l O 2 = 0,859 l CO 2 + 0,4 g H 2 O + 0,16 g N4,7 kcal 1g TAG + 2,023 l O 2 = 1,436 l CO 2 + 1,07 g H 2 O9,5 kcal 5,054,66

26 Princip nepřímé kalorimetrie II. K přesnému zjištění EE je nutno znát trojpoměr oxidovaných živin Měříme navíc výdej CO 2 a odpady N močí ▫z těchto hodnot již lze EE zjistit přesně ▫RQ= CO 2 /O 2 1g glukózy + 0,747 l O 2 = 0,747 l CO 2 + 0,6 g H 2 ORQ=1,0 1g proteinu + 1,031 l O 2 = 0,859 l CO 2 + 0,4 g H 2 O +0,16 g NRQ=0,83 1g TAG + 2,023 l O 2 = 1,436 l CO 2 + 1,07 g H 2 ORQ=0,71

27 Princip nepřímé kalorimetrie III.

28 Princip nepřímé kalorimetrie Výstupy Trojpoměr oxidovaných živinEnergetický výdej Kalkulace Množsví oxid. proteinů O 2 NP, CO2 NP Vstupy Spotřeba O 2, výdej CO2Odpady N močí

29 Výpočet EE z O 2, CO 2 a odpadů N Vzorce navržené různými autory se liší, odchylka je minimální ▫Consolazio, 1963 ▫Elia & Livesey, 1990 ▫Mansel & Macdonald, 1990 etc. Kalorimetr kalkulaci provádí sám

30 Úskalí nepřímé kalorimetrie Základní podmínky: ▫adekvátní kalibrace  FiO2 v bombě musí odpovídat inspir. FiO2 ▫rovnováha mezi respirací a ventilací  nestabilní ABR  pozor na úniky z okruhu, bublající hrudní drény! ▫ adekvátní stanovení odpadů N močí  met. acidóza = až 50% N vyloučeného jako amoniak!

31 Úskalí nepřímé kalorimetrie II Metabolický „steady state“ je předpokladem ▫GNG z AK a následně oxidace glukózy kalorimetrie nerozliší od přímé oxidace AK ▫ketogeneze z MK a oxidace KL = oxidace MK atp. Pozor:  anaerobní metabolismus (RQ >1,0 )  oxidace ketolátek (RQ = 0,89-1,0)  de novo lipogeneze (RQ >1,0) Matematické korekce pro tyto situace existují, ale jsou pro praxi těžko použitelné: Frayn, Am J Phys, 1983; Livesey, Am J Clin Nutr, 1988; Mansell, Am J Phys, 1990

32 Nepřímá kalorimetrie v praxi U pacientů ve stabilizovaném stavu ▫poskytuje klinicky relevantní data o EE, a tím nám umožní vyhnout se NEGATIVNÍ KUMULATIVNÍ ENERGETICKÉ BILANCI i OVERFEEDINGU Vzestup RQ >1,0 ▫anaerobní metabolismus? ▫přetížení glukózou (de novo lipogeneze)? Pokles RQ <0,7 ▫nevídáme: nejč. technická chyba ▫čistá glukoneogeneze, hrazení kyslíkového dluhu

33 Nepřímá kalorimetrie v praxi Vzestup klidového EE proti předchozím dnům ▫SIRS/sepse Pokles klidového EE proti přechozím dnům ▫sepse, CARS ▫smrt mozku (pokles EE o 25%)

34 Co je energetický výdej a jak je možné jej odhadnout, vypočítat nebo změřit?

35

36 3. Inzulínová rezistence u kriticky nemocných příčiny, důsledky, možnosti ovlivnění

37 Inzulínová rezistence = stav, kdy jsou anabolické procesy refrakterní ke stimulaci normálními hladinami inzulínu (Frayn, 1986) ▫centrální: rezistence jater na supresi GNG ▫periferní: rezistence svalu na stimulaci odsunu glukózy, oxidace i neoxid. metabolismu 1877 C. Bernard: hyperglykémie u hemorhagického šoku ▫dnes: 70% JIP pacientů má hyperglykémii 1936 Himmsworth: odlišil 2 typy DM (Marik, 2004; Carlson, 2004)

38 Účinky inzulínu

39 Diferencovaná citlivost k inzulínu Lipolýza Glykogenolýza Proteolýza GLUT-4 Syntéza glykogenu 0 10 20 30 40 50 60 70 80 90 100 110 INZULINEMIE [mU/l] Inzulinemie při 1/2 Vmax při glykemii 5 mM

40 Metody stanovení inzulínové citlivosti Historické metody Clampové techniky - zlatý standard IVGTT a „minimal model“ Zjednodušené metody vhodné pro klinické použití ▫HOMA ▫oGTT a z něj odvozené matematické modely

41 Historie …před DeFronzem Inzulínový toleranční test (Hoggaard, 1929) Inzulínový supresní test (Shen, 1970) 1966 Anders: Manual feedback control of blood glucose concentration, Automation in analytical chemistry Index inzulinemie / glykemie (Perley, 1966; Seltzer, 1967)

42 Hyperglykemický clamp I. 1979 De Fronzo - Am J Physiol. Infuze glukózy (bez inzulínu!), regulovaná tak, aby se udržela konstantní hyperglykemie Stále stoupá inzulinemie i spotřeba glukózy

43 Hyperglykemický clamp II. Poskytuje info o sekreci inzulínu o citlivosti na inzulín Citlivost na inzulín = M/I M = metabolic disposal I = inzulinemie Mnohé nevýhody (non-steady), ale myšlenkový základ pro ostatní metody.

44 Euglykemický clamp I. Princip: exogenní inzulín umožní dosáhnout konstantní inzulinemie, a tím steady state Euglykemie zabrání kontraregulační odpovědi Spotřeba glukózy je měřítkem citlivosti k inzulínu: M/I

45 Princip euglykemického clampu Inzulín + infuze ECT Glukóza (endog. produkce) (ztráty močí)

46 Kalkulace citlivosti k inzulínu Glc inf = M + SC + glykosurie M = Glc transportovaná do ECT při dosažené inzulinemii I Citlivost k inzulínu = M/I Kalorimetrií lze odlišit, kolik Glc z M bylo oxidováno (oxidative disposal) a z jaké části byl synt. glykogen (NOGD)

47 Euglykemický clamp II. „Zlatý standard“ pro měření citlivosti k inzulínu (ADA Consensus, 1997) Přesná metoda s výbornou reproducibilitou Vylepšení: ▫nepřímá kalorimetrie odliší oxidativní a neoxidativní komponentu M ▫infuze značené glukózy (kvantifikuje syntézu glukózy de novo = Ra)

48

49 Euglykemický clamp - úskalí a limitace Principiální: ▫endogenní produkce glukózy není zcela potlačena ▫suprese lipolýzy, falešně nízká IR v nepřítomnosti FFA Praktické: ▫náročnost a cena ▫pro kliniku nepoužitelné

50 IVGTT Princip: i.v. bolus glukózy, následně frekventní glykémie Rychlost „glucose disappearance“ odrážela ▫citlivost k inzulínu ▫míru stimulované sekrece inzulínu Po objevení metody stanovení inzulínu se z IVGTT vyvinul „minimální model“

51 Minimální model I. Bergmann, 1979 Dvojkompartmentový model distribuce glukózy a inzulínu při IVGTT Dissapearance = S G + Z S I ▫S G = glucose effectiveness (lineární) ▫Z = přírůstek inzulinemie ▫SI = sensitivity index

52 Minimální model II. Poskytuje dobré info o časné i pozdní fázi inzulínové sekrece Podmínkou výpočtů je měřitelný přírůstek inzulinemie (problém u T1DM a j.), proto modifikován: ▫i.v. tolbutamid ▫i.v. inzulín 20 min po bolusu glukózy

53 Minimální model III. Technická náročnost (frekventní odběry, trvá 4 hod, 2 i.v. linky) Komplikace: hypoglykemie Zpochybňován: SG nekoreluje s izotopovými studiemi, „příliš minimální“ Závěr: Pro kliniku složitý, pro vědu nepřesný

54 Jednoduché metody použitelné v klinice Indexy senzitivity k inzulínu (IS) počítané z lačné glykémie a inzulinemie (např. HOMA) Homeostáza je nutnou podmínkou!! dtto při definované glukózové zátěži ▫perorální = oGTT ▫i.v. = CIGMA

55 Indexy IS z lačné glykémie + inzulinemie

56 oGTT Testuje zároveň senzitivitu k inzulínu a jeho sekreci Modeluje p.o. zátěž, pro kliniku výhodný Stanovujeme-li nejen glykémie, ale i inzulinémie v 0., 60. a 120 min, poskytne validní informaci o IS

57 Indexy IS z oGTT Regresní analýzou získané vzorce stanovují IS s r=0,62 až 0,79 ▫užívají G a I v 0., 60. a 120. min Matematické modely: ▫Avignon 1999 (I a G v 0. a 120, DV). r=0,92 ▫Mari, 2000 (3 h oGTT, složitý matematický aparát) r=0,92

58 Úskalí interpretace citlivosti k inzulínu Citlivost k inzulínu se překrývá u diabetiků II. typu a normálních osob Většinou měříme pouze účinky inzulínu na glukózový metabolismus, resp. odsun Glc z ECT Neodlišíme účinky inzulínu v játrech a na periferii

59 IR u kriticky nemocných - příčiny Ebb fáze (do 24 hod): ▫katecholaminy (též porucha sekrece inzulínu) ▫glykogenolýza, snížený obrat glukózy Flow fáze (2.-10. den): ▫postreceptorová IR interakcí s kontrareg. hormony a cytokiny (SIRS…) ▫zvýšený celotělový obrat glukózy Prolongovaná fáze krit. onemocnění ▫ztráta sval. hmoty, general. adenohypofyzární suprese

60 Účinky inzulínu u kriticky nemocných Inzulinemie [IU/l] nutná pro supresi mtb. dráhy: Chambrier, Clin Sci, 2000

61 Sekrece inzulínu v kritickém stavu (Duška et al., Metabolism, 2008)

62 Důsledky inzulínové rezistence v EVOLUCI -lipolýza -proteolýza -glukoneogeneze - inzulínová rezistence ve svalu NEFA, ketony glukóza glutamin

63 Důsledky IR na JIP 21. století -lipolýza -proteolýza -glukoneogeneze - inzulínová rezistence ve svalu nevadí hyperglykémie ztráta svalové hmoty

64 IR u kriticky nemocných - důsledky Hyperglykémie ▫cytopatická hypoxie, MODS ▫prohloubení deficitu glutaminu ve svalu ▫vyšší riziko infekčních komplikací Dyslipidemie kriticky nemocných ▫hypocholesterolemie (LDL i HDL), vyšší TG Je rezistence k proteoanabolickým účinkům inzulínu? ▫rozporná data

65 Terapeutický přístup Překonání inzulínoreziostence – inzulinoterapie ▫= léčba monitorována nejsnáze měřitelným parametrem: glykémií Léčebné ovlivnění inzulínorezistence

66 Hyperglykémie u kriticky nemocných Do r. 2001 velmi benevolentní přístup, zahájení inzulinoterapie až při glykémii >12 Mm Změna paradigmatu v r. 2001: Guidelines for… Int Care Med, 2001

67 van den Berghe, NEJM, 2001

68

69

70 van den Berghe, 2006 Morbidita byla nižší ve skupině intenzifikované léčby Mortalita byla identická ▫vyšší v podskupině pacientů s diabetem a u pac. setrvavších na JIP méně než 3 dny (16 vs. 38%) ▫výskyt hypoglykémií byl nezávislým prediktorem mortality Efekt IIT byl největší u pac. s nejnižším vstupním APACHE, ale nejdéle setrvavších na JIP

71 Argumenty proti těsné kontrole Obavy z hypoglykémie Studie s opačným výsledkem: vyšší mortalitou ve skupině IIT ▫VISEP (Infection, 2005 + NEJM 2008) ▫Glucontrol (předčasně zastavena) U pacientů s kraniotraumatem při těsné kontrole glykémie stoupá laktát v jug. bulbu (Crit Care Med, 2006)

72

73

74 Kontrola glykémie – praktická doporučení Z těsné kontroly glykémie (cíl = 4,5-6,1 mM) pacienti profitují, s výjimkou: ▫neurologických postižení ▫diabetiků 1. i 2. typu ▫předpoklad pobytu na JIP pod 3 dny (příjem p.o.) Sestrou řízený protokol ▫31 publikovaných, vždy lepší výsledky u protokolů řízených sestrou než lékaři ▫naše prac.: Kanji, Int Care Med, 2004

75 Glykémi e [mM] Co dělat?Další <2,5Zastavit inzulín, i.v. 30ml G 40%. Info lékaře. Glykémie za 30 min, je-li nad 6,1, znovu inzulín polovinou původní rychlosti. za 30 min 2,6-3,9Zastavit inzulín na 30 min, pak znovu glykémii, je-li nad 6,1 znovu inzulín polovinou původní rychlosti. za 30 min 4,0-4,4Nyní rychlost inzulínu pod 2,5 ml/hod: sniž rychlost o 0,3 ml/hodza 2 hod Nyní rychlost inzulínu 2,5 ml/hod a více: sniž rychlost inzulínu o 1 ml/hod 4,5-6,0Beze změny – gratulujeme.za 3 hod 6,1-8,0Je-li nynější glykémie nižší než předchozí, beze změny.za 3 hod Je-li stejná nebo vyšší, zvýšit dávku inzulínu o 0,3 ml/hod 8,1-10Je-li nynější glykémie nižší než předchozí, beze změny. za 2 hod Je-li stejná nebo vyšší, zvýšit dávku inzulínu o 0,6 ml/hod 10,1-14Je-li nynější glykémie nižší než předchozí, beze změny. za 1 hod Je-li stejná nebo vyšší, zvýšit dávku inzulínu o 3 1 ml/hod. 14,1-22Zvýšit inzulín o 1ml/hod. Je-li glykémie vyšší než 14 už potřetí za sebou, zvýšit dávku inzulínu o 50% (t.j. např. ze 6 na 9 ml/hod)za 30 min >22Info lékaře.dle lékaře

76 Kontrola glykémie – praktická doporučení U hemodynamicky nestabilních nemocných vždy glykémie z arteriální krve ▫kapil. glykémie u pac. v šoku nemusí korelovat s arteriální!! Vyřešit vnitřní kontrolu, motivaci personálu ▫frekvence hypoglykémií: cíl pod 5% naměř. hodnot ▫zastavení inzulínu při přerušení výživy musí být pro sestru samozřejmostí Crit Care Med 2005;33:2778-85

77 Kauzální ovlivnění IR Léčba příčin: ▫analgézie, péče o náplň oběhu – minim. katecholaminové bouře ▫terapie infekce Vliv nutrice: ▫živiny do střeva, lze-li ▫přetížení sacharidy = akumulace tuku v játrech a ve svalu ▫i.v. glutamin? Bakalář, CCM 2006, Dechelotte, CCM 2007

78 Inzulínová rezistence - shrnutí T2DM: ▫příčina=abd. obezita + ztukovatělý sval ▫prokázaný benefit při snížení rezistence k inzulínu ▫nevýhody překonávání inzulínem Kriticky nemocní ▫příčina = interakce inzulínu s cytokiny a kontrareg. hormony ▫prokázaný benefit při překonávání rezistence inzulínem ▫není jasné zda sám fenomén IR škodí

79 Jaký je význam inzulínové rezistence z pohledu intenzivisty? Jak IR kvantifikujeme?

80 4. Nutriční problematika T2DM Reduční režimy u T2DM z pohledu nutricionicty Pacient s T2DM v podmínkách perioperační a intenzivní péče

81 Výživa pacientů s T2DM Redukční režimy a jejich vliv na inzulínovou rezistenci Pacient s T2DM v podmínkách perioperační a intenzivní péče

82 Redukční režimy u T2DM Dlouhodobá redukce hmotnosti + zvýšení fyzické aktivity = základ léčby pac. s T2DM (Diabetes Prevention Programme Research Group, 2002 Tuomilehto, NEJM, 2001)

83 Dietní manipulace u T2DM U obézních T2DM: základní paradigmata ▫negat. energ. bilance o cca 500 kcal/den ▫redukce obsahu tuků pod 30% energie (SFA=MUFA=PUFA) ▫sacharidy: nikdy ne pod 130g/den, 60% energie, omezit jednoduché cukry, maximalizovat vlákninu ▫proteiny: dop. 0,8-1g/kg/den

84 Systém diabetických diet DietaSacharidyEnergie 9 A175 g1500 kcal 9 B225 g1800 kcal 9 C275 g2050 kcal 9 D325 g2400 kcal T2DM T1DM S 2,5100 g600 kcal VLCD – je vhodná?

85 VLCD u T2DM Dodnes praxe hladovek (VLCD) za hospitalizace s cílem „prolomení inzulínorezistence“ Asi není správně: ▫akutní hladovění zhoršuje u T2DM inzulínorezistenci ▫pacienti s T2DM ztrácejí schopnost šetřit proteiny  při VLCD s norm. obsahem proteinů  při akutním hladovění VLCD indikovat jen u pac. s nejtěžší IR ▫při hladovce nutná kontrola glykémií inzulínem (Duška, Clin Nutr 2005) (Gougeon, Diabetes 2000) (Duška, Clin Nutr, 2007)

86 T2DM a perioperační nutrice Cíl = předejít dekompenzaci, minimalizovat hladovění Zásady: ▫vysadit PAD a převést na inzulín:  biguanidy + hypoxie = fatální laktátová acidóza  sekretagoga (SU): není řiditelnost  u pacientů na dietě lze akceptovat vynechání jídla bez IIT, nutné kontroly ▫diabetici hůře tolerují negativní energetickou bilanci, ztrácejí více proteinů, horší se jim IR

87 T2DM a perioperační nutrice U těžších zákroků a T2DM léčených inzulínem: ▫ráno v den operace infúze G 10%, zahájení i.v. infúze inzulínu a glukózy lineárním dávkovačem ▫zvýšit dávku u morbidní obezity, kortikoterapie (2x-4x), mimotělního oběhu (3x-6x) (tab. z Krejčí, Interní med. pro praxi, 12/2005)

88 T2DM a perioperační nutrice ▫kontroly glykémií á 1 hod s úpravou rychlosti inzulínové infúze ▫pokračuje v průběhu anestezie a pooperační období V pooperačním období co nejčasnější obnova enterálního příjmu ▫enterální přípravky pro diabetiky (Diason LE) jsou vhodné, ale ne nezbytné ▫cíl: obvykle 200g sacharidů a 1,5 g prot/kg (ADA Consensus statement, Diab Care 2006)

89 T2DM na JIP V i.v. inzulinoterapii pokračujeme až do obnovení p.o. příjmu ▫cílové glykémie při léčbě nejsou jasně stanoveny (7-10 mM????) Kalorický cíl je stejný jako u nediabetiků, vyžaduje ale přísnější kontrolu ▫overfeeding je škodlivější vzhledem k IR ▫JIP není vhodné místo k léčbě obezity! ▫tolerance EN je horší (gastroparesa) - prokinetika

90 T2DM na JIP Podmínky převedení z i.v. na s.c. inzulín ▫hemodynamická stabilita, bez katecholaminů ▫nejsou edémy ▫stabilní nutriční podpora (další výkony vyžadující lačnění nejsou plánovány, nezvrací) ▫stabilní dávka kortikoidů Obvykle 70-80% dávky i.v. inzulínu se podá jako bazál (NPH, Lantus), dále se dopichují bolusy k jídlům či sippingu

91 T2DM na JIP Převedení z s.c. IIT zpět na PAD ▫Je zhojena operační rána? ▫Respektování specifických kontraindikací

92 Nejčastější chyby v metabolickonutriční péči o T2DM Ponechání pacienta na PAD (metformin!!!) G 10% + 16 IU HMR kape nekontrolovanou rychlostí, nikdo neměří glykémie, pacient je v celkové anestezii Ponechání CSII inzulínovou pumpou (týká se T1DM) ▫resorpce inzulínu ze s.c. oblasti je nekonstantní kvůli hemodynamické nestabilitě

93 Je nutriční strategie u diabetiků stejná jako u nediabetiků?

94 Děkuji za pozornost Prezentace ke stažení na www.duska.eu


Stáhnout ppt "Energetický výdej Výživa a inzulínová rezistence František Duška Klinika anesteziologie a resuscitace 3. LF UK Diabetologické a nutriční centrum FNKV,"

Podobné prezentace


Reklamy Google